实现PVD涂层的高性价比应用取决于许多因数,对于每种特定的加工应用而言,通常只有一种或几种可行的涂层选择。涂层及其特性的选择是否正确决定着加工性能明显提高与几乎没有改善之间的区别。因此根据加工的速度,冷却方式,被加工材料,加工方式等详细的参数来选择合适的涂层是必须的。以下是我们PVT涂层公司根据无数次试验的涂层选择推荐:
一)涂层种类选择
1)氮化钛涂层(TiN)
TiN是一种通用的涂层,可以提高刀具硬度并具有较高的氧化温度。
用途:高速钢切削工具,慢速加工工具(如低速车刀粒),耐磨零件,注塑
模具。
2)氮碳化钛涂层 (TiCN)
TiCN涂层是在TiN的基础上添加碳元素,以提高涂层的硬度和低的摩擦系数。
用途:高速钢刀具,冲压模具,成型模具
3)氮铝钛(TiAlN)、 氮钛铝AlTiN
俗称:中铝(Al:Ti=50:50)、高铝(Al:Ti=67:33)以上,
TiAlN/AlTiN涂层在加工过程中形成的氧化铝涂层可以有效提高加工工具的高温加工寿命,AlTiN涂层的抗高温氧化比TiAlN要高100度左右。
用途:硬质合金工具 (加工材料硬度低于HRC45时建议用TiAlN,加工材料硬度高于HRC45时建议使用AlTiN涂层。), 薄壁件冲压模具(TiAlN),压铸模具(AlTiN)
4)氮化铬涂层 (CrN)
CrN涂层具有良好的抗粘结性,抗腐蚀性,耐磨性。
用途:加工铝合金,红铜的刀具,注塑模具,零件(特别是有润滑油浸泡)
5)CBC (DLC)
PLATIT CBC涂层的组成为TIN+TICN+DLC结构。具有摩擦系数较低,
耐磨损,膜层应力小好等优点
用途:润滑涂层,成型模具,铝合金等粘结性强材料冲压模具。
二)涂层厚度的选择:
刀具: 刃部直径8mm以上:2.5~ 3um (刀粒亦按此要求),
刃部直径4~6mm:2~2.5um
刃部直径4mm以下:1.5~2um
模具: 五金模具、冲压模具,一般塑胶模具,压铸模具:2.5um,
拉丝模具,大型模具:3um,
镜面或高精密蚀纹模具:1um.左右
1现代金属切削对刀具的要求
现代化的金属切削加工,对刀具的要求是高切削速度、高进给速度、高可靠性、长寿命、高精度和良好的切削控制性。涂层刀具的出现,使刀具切削性能有了重大突破,它将刀具基体与硬质薄膜表层相结合,由于基体保持了良好的韧性和较高的强度,硬质薄膜表层又具有高耐磨性和低摩擦系数,从而使刀具的性能大大提高。
自20世纪70年代初硬质涂层刀具问世以来,化学气相沉积(CVD)技术和物理气相沉积(PVD)技术相继得到发展,为刀具性能的提高开创了历史的新篇章。涂层刀具与未涂层刀具相比,具有显着的优越性:它可以提高加工效率,提高加工精度,延长刀具使用寿命,从而保证加工件的质量,降低加工成本。
2刀具硬质涂层新材料
2.1多元、复合硬质涂层材料的发展
刀具表面的硬质薄膜对材料有如下要求:①硬度高、耐磨性能好;②化学性能稳定,不与工件材料发生化学反应;⑧耐热耐氧化,摩擦系数低,与基体附着牢固等。单一涂层材料很难全部达到上述技术要求。涂层材料的发展,已由最初的单一TiN涂层、TiC涂层,经历了TiC-Al2O3-TiN复合涂层和TiCN、TiAlN等多元复合涂层的发展阶段,现在最新发展了TiN/NbN、TiN/CN,等多元复合薄膜材料,使刀具涂层的性能有了很大提高。
硬质涂层材料中,工艺最成熟、应用最广泛的是TiN。目前,工业发达国家TiN涂层高速钢刀具的使用率已占高速钢刀具的50%-70%,有的不可重磨的复杂刀具的使用率已超过90%。由于现代金属切削对刀具有很高的技术要求,TiN涂层日益不能适应。TiN涂层的耐氧化性较差,使用温度达500℃时,膜层明显氧化而被烧蚀,而且它的硬度也满足不了需要。
TiC有较高的显微硬度,因而该材料的耐磨性能较好。同时它与基体的附着牢固,在制备多层耐磨涂层时,常将TiC作为与基体接触的底层膜,在涂层刀具中它是十分常用的涂层材料。
TiCN和TiAlN的开发,又使涂层刀具的性能上了一个台阶。TiCN可降低涂层的内应力,提高涂层的韧性,增加涂层的厚度,阻止裂纹的扩散,减少刀具崩刃。将TiCN设置为涂层刀具的主耐磨层,可显着提高刀具的寿命。TiAlN化学稳定性好,抗氧化磨损,加工高合金钢、不锈钢、钦合金、镍合金时,比TiN涂层刀具提高寿命3—4倍。在TiAlN涂层中如果有较高的Al浓度,在切削时涂层表面会生成一层很薄的非品态Al2O3,形成一层硬质惰性保护膜,该涂层刀具可更有效地用于高速切削加工。掺氧的氮碳化钛TiCNO具有很高的显微硬度和化学稳定性,可以产生相当于TiC+Al2O3复合涂层的作用。一些过渡金属氮化物、碳化物、硼化物以及它们的多元复合化合物,有的具有相当高的硬度,这些材料都可以开发出来应用于涂层刀具,将会使涂层刀具的性能有新的突破。
2.2低压气相合成金刚石薄膜的应用
在上述硬质薄膜材料中,显微硬度HV能够超过50GPa的有3种:金刚石薄膜、立方氮化硼CBN、氮化碳β-C3N4。这些为数不多的超高硬度薄膜材料的出现,为涂层刀具硬质薄膜的发展开辟了十分稀少而昂贵的天然金刚石远远满足不了现代工业的需要。20世纪50年代中期,美国通用汽车公司人工合成了金刚石,得到颗粒状和粉末状金刚石。由于颗粒状金刚石加工困难,很难把它涂到刀具表面。机械行业常用的聚品金刚石刀片(PCD)也由于几何形状单一,无断屑槽和合理的几何参数,限制了其性能的发挥。70年代初采用低压化学气相沉积方法合成了金刚石薄膜,经过20多年的技术攻关,低压气相合成金刚石的技术终于有了重大突破,研究金刚石成为世界性的热门课题。PVD涂层
金刚石和石墨是同素异形体,金刚石品体是立方品系,属Fd3m空间群;而石墨是六角品系,属R3m空间群。由于原子之间的键合方式不同,使其性能差异十分巨大。从热力学的理论来看,石墨比金刚石更稳定。低压气相生长金刚石,在碳的相图中,是在石墨为稳态而金刚石为亚稳态的区域中进行。然而,由于两相的化学势十分接近,两相都能生成。低压气相合成金刚石的关键技术是抑制石墨相,促进金刚石相生长。常用的合成方法有热丝法,等离子体增强化学气相沉积(PECVD),包括微波PCVD、电子回旋共振ECR—PCVD、直流和射频PCVD等方法,直流和高频电弧放电热等离子体法等。反应过程中输入的能量(如射频功率、微波功率等)、反应气体的激活状态和最佳配比、沉积过程的成核模式等,对于生成金刚石膜有决定性作用。衬底材料的晶型和点阵常数对金刚石膜成核生长影响很大,当金刚石相和石墨相在衬底上同时成核时,石墨相就会迅速生长。如果存在高浓度的原于氢就会对长出的石墨相起腐蚀作用而将石墨相除去,虽然它也能对金刚石相起腐蚀作用,但速度却慢得多,从而达到抑制石墨相生长的目的。许多沉积金刚石薄膜的温度要求为600℃-900℃,因此该技术常用于硬质合金刀具表面沉积金刚石薄膜。